OMNIS

Observatory for Multiflavor Neutrinos from Supernovae

A Proposed Facility

Richard Talaga, Argonne National Laboratory

OMNIS Overview

Observation of Neutrinos from Galactic Supernovae

Expected Number of Supernovae: ~3-6 per century

OMNIS

- Detection of □ □ □ □ □ □ □ = + antineutrinos
- Identification of □_e
- Sensitive to different type of neutrino than Super-K
 - OMNIS: □
 - Super-K: □e-bar
- Planned Lifetime of the Experiment: ~ 50 years
- Locations: WIPP (and possibly NUSL)
- Number of neutrino events from one Supernova
 ~2,500 from Galactic Center (8kpc); ~400 from far side of the Milky Way

OMNIS Astrophysics

- Check the Standard Model of core collapse
 - What is the time evolution of the neutrino flux?
 - Measure the neutrino energy distributions
 - as emitted from neutrinospheres; predictions are: $\langle E |_{\square_1}, |_{\square_1} \rangle = 20-30 \text{ MeV}$; $\langle E |_{\square_e} \rangle = 8-13 \text{ MeV}$
- Detect short-time phenomena; possible collapse to a black hole.
- Examine late-time effects; cooling of the neutron star
 - Neutrino energy distributions beyond the first few seconds

OMNIS Neutrino Physics

- Direct Neutrino Mass Measurements: all neutrino species
 - $\sim 10-20 \text{ eV/c}^2$
 - Especially powerful if SN core collapses to a Black Hole (sharp time cutoff) ~ 3 eV/c²
- Neutrino Oscillations: Measure the energy spectra
 - MSW transitions outside of the core are expected to produce hot [],
 and cooler [], ,[]
 - This depends on \square_{13} and if MSW transitions happen in the C/He or He/H shells

Two Types of Detectors for OMNIS

- 2 kT: Lead Slabs & (Scintillators + Gd Sheets)
 - Four 1/2 kT Modules
 - Detect neutrons produced from □ Pb cc & nc interactions
 - Number of neutrino events from 8kpc Supernova: ~1,500
- 1 kT: Lead Perchlorate Dissolved in Water
 - Twenty 50-Ton modules
 - Detect neutrons produced from □ Pb cc & nc interactions
 AND electrons produced from □ Pb cc interactions
 - Measure the Energy spectrum of □ events
 - Number of neutrino events from 8kpc Supernova: ~ 700

OMNIS Lead-Scintillator Detector

- \triangleright Detection Method: \square + Pb \rightarrow X + (1 or 2 neutrons)
 - "prompt signal" ~1 MeV neutron excites scintillator

 - Obtain a rough energy spectrum of neutrinos from rate of single neutron to double neutron events
 - Note: cc and nc signals are indistinguishable
 - Why Lead?
 - Large neutrino cross section and low threshold (7.4 MeV for single neutron nc events)
 - High neutron production efficiency
 - · Low neutron absorption

OMNIS Lead Perchlorate Detector

A Transparent Lead Perchlorate-Water Solution (Soluble up to 80% by weight)

- Detection Method: □_e + Pb → e⁻ + X + (1 or 2 neutrons)
 - "prompt signal" e Cerenkov ring
 - "delayed signal" 10-100

 s later, thermalized n captures on Cl
- Determine nc/cc ratio
- Measure □_e energy spectrum
 - The □_e represent the □_□ ,□_□ energy spectra before MSW transitions!

OMNIS Conclusion

There is much to learn from a Galactic Supernova

- Dynamics of SN processes
- Cooling of neutron star
- Collapse to a black hole
- Neutrino mass limits
- Neutrino oscillations
- OMNIS will be a supernova neutrino observatory designed to operate for ~50 years, with unique capabilities that are complementary to existing facilities.